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Simulating eight lattices for Pomeau's cellular automata simultaneously through 
bit-per-bit operations, a vectorized Fortran program reached 30 million updates 
per second and per Cray YMP processor. We give the full innermost loops. 
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One of the most practical aspects of cellular automata (1) is the application 
to two-dimensional hydrodynamics. (2) One places the molecules on the 
sites of a large triangular lattice such that no site is occupied by more than 
one particle having the same velocity. Each particle can be at rest, or can 
have a velocity pointing to one of its nearest neighbors. At each time step, 
the molecules move to their neighbors and are scattered there into a dif- 
ferent lattice direction. For  liquid-vapor critical phenomena, an analogous 
lattice gas approximation, the spin-l/2 Ising model, has given critical 
exponents in agreement with real three-dimensional fluids. Analogously, it 
is hoped that these lattice gas cellular automata describe correctly at not 
too high Reynolds numbers the hydrodynamic behavior averaged over 
many molecules. A detailed introduction to these automata is given by 
d'Humieres e ta / .  (3) 

Just as for Ising models, also for hydrodynamic cellular automata 
special-purpose computers have been constructed which simulate them at 
a very high speed per hardware dollar; ref. 3 gives 6.5 million updates per 
second on such a machine. Nevertheless, general-purpose computers 
dominate in Ising model research. Many papers have been published on 
how to use the bit-by-bit handling procedures of most Fortran compilers 
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to process many sites in parallel (multi-spin-coding) to save time and 
memory(4); further speedup is gained by running these parallel codes on 
vector computers. Similarly, we present here a vectorized multi-site-coding 
algorithm for hydrodynamic automata, hoping that soon the published 
literature will contain alternatives and further improvements. A full copy of 
our 200-line program is available from HLRZ (bitnet HKF211 or 
HKU001 at DJUKFAll) .  

At the beginning, a collision table is defined, as given, e.g., in ref. 3, to 
connect the at most 256 different input configurations of each site with the 
output configuration. For this purpose we number the six directions clock- 
wise and associate with them six bits of each eight-bit byte. If two particles 
collide at a site with exactly opposite momenta, they may have directions 
1 and 4, for example, and thus an input index of 21 + 24 = 18. They are 
scattered into the directions 3 and 6, setting the seventh bit representing 
the angular momentum. Thus, the output index is 23 + 26 + 27 = 200. Thus, 
our collision table contains ICOL(18)=200 and, because of microscopic 
reversibility, also ICOL(200)= 18. A particle at rest is marked by bit zero 
and contributes 2~ 1 to the index; for example, a molecule from direction 
1 (thus flying into direction 4) and hitting a particle at rest may create a 
pair of particles moving in directions 3 and 5: index 2 o + 24 = 17 becomes 
index 23 + 25 = 40, or ICOL(17)=40, ICOL(40)= 17. Probabilistic deci- 
sions are avoided. Similar tables are published in ref. 3; we list here our 
complete collision table: 

DO 10 I=0,255 
10 ICOL( I ) = I  

ICOL( 3)=68 
ICOL( 5)=10 
ICOL( 9)=20 
ICOL( 17)=40 
ICOL( 33)=80 
ICOL( 65)=34 

C 6 TWO-PRONG EVENTS, THEN 3 HEAD-ON 
C COLLISIONS/ROTATIONS 

ICOL( 18)=200 
ICOL( 36)= 146 
ICOL(72)  = 164 
DO 11 I=0,255 

11 ICOL(ICOL(I)) =I  

The velocities of the particles at site x, y are stored in an array 
IV(IX, IY) containing the appropriate index in its last eight bits. From the 
velocities IV at time t -  1 we calculate first an array IU(IX, IY) giving the 
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configurations at time t shortly before the collision. This transfer of 
particles (stream loop) is achieved in our bit notation by setting IU(IX, IY) 
equal to 

AND(IV(IX 
AND(IV(IX 
AND(IV(IX 
AND(IV(IX 

,IY), 129)+ 
- l, I Y -  1),2) + AND(IV(IX , I Y -  1),64)+ 
- 1 , I Y  ),4) + AND(IV(IX + 1,IY ),32)+ 

, IY+ 1), 8) + AND(IV(IX + 1,IY+ 1), 16) 

[The triangular lattice is mapped onto a square lattice with nearest 
neighbors plus two additional neighbors at IX+ 1, I Y + I  and at I X - l ,  
IY-1 .  Then the new configuration is obtained, in principle, by 
IV(IX, IY) = ICOL(IU(IX, IY)) (collision loop). ] 

We now save time and memory by putting eight lattices into the 64-bit 
words of a Cray-XMP vector computer, or four into the 32-bit words of an 
IBM 3090 (without vector feature). This is done in the collision loop basi- 
cally by replacing the number 2 there through bit masks containing eight 
times the number 2, shifted by 8, 16, 24, etc., bits; analogous bitmasks are 
used instead of the number 4, etc. The collision loop unfortunately cannot 
treat the different lattices simultaneously and thus adds up the suitably 
shifted bytes from ICOL(IU(IX, IY)). The two loops now are 

�9 C STREAM LOOP 
DO 100 IX= 1,NX 
DO 100 I Y = I , N Y  

100 1U(IX, IY) = OR(OR(OR(OR(OR(OR(AND(IV(IX, IY), M 129), 
1 AND(IV(IX-  1, I Y -  1 ), M2)), AND(IV(IX , I Y -  1),M64)), 
2 AND(IV(IX-  1, IY ), M4)),AND(IV(IX + 1, IY ), M32)), 
3 AND(IV(IX , IY+ 1), M8)),AND(IV(IX + 1,IY + 1), M16)) 

C COLLISION LOOP 
DO 200 I X = I , N X  
DO 200 I Y = I , N Y  

200 IV(IX, IY)=IOR(IOR(IOR( 
1 ICOL(IAND( IU(IX, IY) ,255) ), 
2 ISHFT(ICOL(IAND(ISHFT(IU(IX, IY), -8),255)), 8)), 
3 ISHFT(ICOL(IAND(ISHFT(IU(IX, IY), - 16), 255)), 16)), 
4 ISHFT(ICOL(IAND(ISHFT(IU(IX, IY), - 24), 255)), 24)) 

for the 32-bit IBM, and suitably expanded in the collision part for the 
64-bit Cray computer. 

With this program, we got a speed of 1.3 updates per microsecond and 
per processor on the IBM 3090, about 23 updates on the Cray-XMP, and 
about 30 updates on the Cray-YMP. With one instead of eight lattices 
simulated in parallel, the Cray speed is less than half as large. 
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These speeds do not contain initialization and analysis. For example, 
the total number of molecules flying in a certain direction is obtained by 
the Cray intrinsic function POPCNT counting the number of up bits in a 
velocity word. (6) Here we again achieved full parallelization for the eight 
lattices analyzed simultaneously, as well as full vectorization; the IBM runs 
much slower here. 

We tested our program by starting with a sinusoidal laminar flow 15) 
and wavelengths equal to the perpendicular system length, to half of it, and 
to one-quarter of it. The velocities, averaged over many sites, then are sup- 
posed to decay as exp(-vk~t)  with v as the kinematic viscosity. The kinetic 
flow energy decays with twice this exponent. Indeed, we found in lattices up 
to size 920 �9 920 such an exponential decay of the energy over two decades 
before it was overtaken by noise, with v near 0.55. (The time unit is one 
sweep through the lattice, and we went up to t = 104. The length unit is the 
nearest neighbor distance of the triangular lattice.) 

An alternative approach uses logical operations only and stores one 
site per bit. (6'7) Speeds of up to 300 updates per microsecond were obtained 
in an assembler language program using all four processors of a 
Cray-XMP. (7) Our Fortran program would need all eight processors of the 
Cray-YMP to get nearly the same speed, but is more transparent if one 
wants to change the collision rules. Even faster are simulations on 65,536 
processors of the connection machine with more than 1000 updates per 
microsecond. (7,8) 

In summary, we achieved full vectorization and partial parallelization 
through multisite coding of hydrodynamic cellular automata, storing eight 
lattices simultaneously into 64-bit words. 
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